Modeling the effects of urban expansion on natural capital stocks and ecosystem service flows: A case study in the Puget Sound, Washington, USA

Zank, B., Bagstad, K.J., Voigt, B., Villa. F. . 2016. Modeling the effects of urban expansion on natural capital stocks and ecosystem service flows: A case study in the Puget Sound, Washington, USA. Landscape and Urban Planning. 149. 31-42

[altmetric doi="10.1016/j.landurbplan.2016.01.004" float="right" popover="left"]

Summary

Urban expansion and its associated landscape modifications are important drivers of changes in ecosystem service (ES). This study examined the effects of two alternative land use-change development scenarios in the Puget Sound region of Washington State on natural capital stocks and ES flows. Land-use change model outputs served as inputs to five ES models developed using the Artificial Intelligence for Ecosystem Services (ARIES) platform. While natural capital stocks declined under managed (1.3–5.8%) and unmanaged (2.8–11.8%) development scenarios, ES flows increased by 18.5–56% and 23.2–55.7%, respectively. Human development of natural landscapes reduced their capacity for service provision, while simultaneously adding beneficiaries, particularly along the urban fringe. Using global and local Moran’s I, we identified three distinct patterns of change in ES due to projected landuse change. For services with location-dependent beneficiaries – open space proximity, viewsheds, and flood regulation – urbanization led to increased clustering and hot-spot intensities. ES flows were greatest in the managed land-use change scenario for open space proximity and flood regulation, and in the unmanaged land-use change scenario for viewsheds—a consequence of the differing ES flow mechanisms underpinning these services. We observed a third pattern – general declines in service provision – for carbon storage and sediment retention, where beneficiaries in our analysis were not location dependent. Contrary to past authors’ finding of ES declines under urbanization, a more nuanced analysis that maps and quantifies ES provision, beneficiaries, and flows better

Leave a Reply

Your email address will not be published. Required fields are marked *





María de Maeztu Excellence Unit 2023-2027 Ref. CEX2021-001201-M, funded by MCIN/AEI /10.13039/501100011033

©2008 BC3 Basque Centre for Climate Change.