Biophysical Characterization of Protected Areas Globally through Optimized Image Segmentation and Classification

Martínez-López, J.; Bertzky, B.; Bonet-García, F.J.; Bastin, L.; Dubois, G. 2016. Biophysical Characterization of Protected Areas Globally through Optimized Image Segmentation and Classification. Remote Sensing. 8. (9) 780

Protected areas (PAs) need to be assessed systematically according to biodiversity values and threats in order to support decision-making processes. For this, PAs can be characterized according to their species, ecosystems and threats, but such information is often difficult to access and usually not comparable across regions. There are currently over 200,000 PAs in the world, and assessing these systematically according to their ecological values remains a huge challenge. However, linking remote sensing with ecological modelling can help to overcome some limitations of conservation studies, such as the sampling bias of biodiversity inventories. The aim of this paper is to introduce eHabitat+, a habitat modelling service supporting the European Commission’s Digital Observatory for Protected Areas, and specifically to discuss a component that systematically stratifies PAs into different habitat functional types based on remote sensing data. eHabitat+ uses an optimized procedure of automatic image segmentation based on several environmental variables to identify the main biophysical gradients in each PA. This allows a systematic production of key indicators on PAs that can be compared globally. Results from a few case studies are illustrated to show the benefits and limitations of this open-source tool.

Keywords: habitat functional types; protected areas; free and open source software; ecological modelling; remote sensing; image segmentation; multivariate statistics

▼ Figures

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Leave a Reply

Your email address will not be published. Required fields are marked *





Financiado por el Ministerio de Ciencia Innovación y Universidades y la Agencia Estatal de Investigación,
a través de la Convocatoria: Maria de Maeztu 2017 (BOE 21/10/2017) siendo la referencia de nuestro expediente: MDM-2017-0714

©2008 BC3 Basque Centre for Climate Change. Excelencia María de Maeztu.


We use cookies of our own and of third parties to improve our services and to be able to offer you, by means of web browsing analysis, the best options. If you continue browsing, we assume that you agree to their use. For further information, please click here.

ACEPTAR
Aviso de cookies